

Real Estate Portfolio Optimization
Final Project Report

Blake Roberts Project Lead / Backend

Colton Goode Meeting Scribe / Backend

Kevin Johnson Quality Control / Frontend

Leelabari Fulbel Meeting Facilitator / Frontend

Nickolas Moeller Report Manager / Backend

Client Principal Financial Group

Faculty Advisor Chinmay Hegde

Team Website https://sdmay19-07.sd.ece.iastate.edu

Team Email sdmay19-07@iastate.edu

https://sdmay19-07.sd.ece.iastate.edu/

Table of Contents
Table of Contents 1

Figures 3
Tables 3
Definitions 3

Executive Summary 4

1.0 Requirements Specification 5
1.1 Functional Requirements 5
1.4 Non-functional Requirements 5

2.0 System Design & Development 6
2.1 Design Plan 6
2.2 Design Objectives 6

2.2.1 System Constraints 6
2.2.2 Design Tradeoffs 6

2.3 Architectural Diagram 7
Figure 1: System Block Diagram 7

2.3.1 Software Block Diagram 8
Figure 2: Application Block Diagram Utilizing Dash Framework 8

2.4 Data Structures 9
2.4.1 Persistent Data Structures 9
2.4.2 Power BI Data Structures 10

First Report (Current vs. Optimal vs. Market Portfolio) 10
Second Report (Efficiency Frontier Graph) 10

3.0 Implementation 11
3.1 Implementation Diagram 11
3.2 Software Used 12
3.3 Rationale for Software Choices 12
3.4 Standards and Best Practices 12

4.0 Testing, Validation, & Evaluation 13
4.1 Test Plan 13
4.2 Unit Testing 13
4.3 User-Level Testing 13
4.4 Evaluation 13

5.0 Project & Risk Management 14

1

5.1 Task Decomposition 14
5.1.1 Roles & Responsibilities 14

5.2 Project Schedule 15
5.2.1 Proposed 15

Figure 3: Proposed Project Timeline 15
5.2.2 Actual 16

Figure 4: Actual Project Timeline 16
5.3 Risks & Mitigation 17

5.3.1 Potential 17
5.3.2 Actual 17
5.3.3 Mitigation 17

5.4 Lessons Learned 17

6.0 Conclusions 18
6.1 Closing Remarks 18
6.2 Future Work 18

2

Figures
Figure 1: System Block Diagram
Figure 2 : Block Diagram Utilizing Dash Framework
Figure 3 : Proposed Project Timeline
Figure 4 : Actual Project Timeline

Tables
Table 1 : Persistent Data Structures
Table 2 : Power BI Data Structures

Definitions
API Application Program Interface

CSV Comma-Separated Values

ID Identification

MPT Modern Portfolio Theory

MVP Minimal Viable Product

NCREIF National Council of Real Estate Investment Fiduciaries

PBI Power BI

SQL Structured Query Language

UI User Interface

UX User Experience

3

Executive Summary
Principal lacks an in-house (or not-3rd-party) tool capable of assessing the potential

return and risk of real estate investments. Without such a tool, analysis of assets comes down to
a per-property basis which lacks a high, market-level view of the investment space. Principal
attempts to mitigate the lack of tooling through the use of a third party, utilizing Costar. Costar
compiles quarterly reports including market and property level analysis; however, the reports are
both costly and slow in the making.

The application is needed to analyze market data and user constraints to advise portfolio
managers in purchase and sale decisions. The application demonstrates principles of Modern
Portfolio Theory (MPT), namely, the Markowitz portfolio optimization model. The application
supports many modes of portfolio analysis by handling a multitude of constraints over factors
such as: market, property type, and time period. Microsoft Power BI is used to visualize and
break-down the optimization results.

4

1.0 Requirements Specification

1.1 Functional Requirements
1. Read current portfolio holdings. The user will be able to upload portfolio holdings from

CSV files. This would require standardizing the input format. Ideal: Read returns and
covariance from a database.

2. Read expected returns and covariance matrix for all assets. The user will be able to
upload returns and covariance matrix from CSV files. This would require standardizing
the input format. Ideal: Read returns and covariance from a database.

3. Update expected returns. The user should have the ability to update the expected
returns for specific asset groups by location, property type, or both.

4. Define optimization constraints. The user can add or edit constraints prior to
optimization. See section on Optimization Constraints for desired functionality.

5. Generate optimal portfolios. Based on the user’s defined constraints, the application
will launch a backend process to determine the optimal portfolio holdings.

6. Generate and visualize efficient frontiers. The application will generate an efficient
frontier from a range of risk & return values. It will show individual markets, property
types, and the current portfolio compared to the frontier.

7. Visualize current holdings. The application will show current portfolio holdings by
geography, property, etc. Show top N holdings. Summarize expected returns and risk.

8. Visualize optimal portfolio results. The application will show optimal portfolio holdings
by geography, property, etc. It must show top N holdings and summarize expected
returns and risk.

9. Visualize differences between optimal and current holdings. The application will
summarize differences between the optimal and current portfolios and display in maps,
charts, plots, etc.

10. Recommend actions based on current holdings. Recommendations for buy and sell
decisions given the current portfolio holdings will be shown. The application will attempt
to justify decisions based on increasing expected returns, reducing risk, or both.

11. Share results. Results will be exported to a report or share via email.

1.4 Non-functional Requirements
1. The system will use only open source libraries and frameworks.
2. The system’s reliance on specific types of infrastructure must be minimal.
3. Optimization takes no longer than 5 seconds to calculate.
4. A team of portfolio managers or analysts can use the application at one time.

5

2.0 System Design & Development

2.1 Design Plan
The project requires an application consisting of a user interface allowing the analysis

and construction of models based on real estate market data. Reasonable proposed designs
and approaches would be software solutions. As per the requirements of the project, both a
native application and a web application are feasible.

A final approach would be to develop a Python Flask server integrated with the Python
Dash framework by Plotly. The resultant web application would be hosted on Principal servers.
This application would be reachable by any computer within Principal’s network via an internet
browser. This design would only require knowledge in Python which makes it an ideal candidate
for this project.

2.2 Design Objectives
The application must suit the unique needs of assisting a real estate portfolio manager in

decisions over the purchase or sale of real estate investments.

2.2.1 System Constraints
Because the application will be maintained by Principal’s Data Science team, the

preferred language to use is Python. Furthermore, a web app is desirable, but JavaScript and
HTML is to be avoided. Dash by Plotly is thus a key framework to satisfy these constraints.

2.2.2 Design Tradeoffs
Python and Dash were used in development. This was not ideal for developing a full

fledge web application. Dash posed many constraints on UI/UX which determined the viability of
a feature where with JavaScript the feature would have been fully feasible.

6

2.3 Architectural Diagram

Figure 1: System Block Diagram

Our application is built entirely with Python with an embedded Power BI visuals.

7

2.3.1 Software Block Diagram

Figure 2: Application Block Diagram Utilizing Dash Framework

This shows the breakdown of our Python application and the communication between
components.

8

2.4 Data Structures

2.4.1 Persistent Data Structures
The following tables are consumed by the Markowitz optimization algorithm.

NCREIF (table) Asset (table) Portfolio (table)

Market
Property Type
YYQ
Total Return
Appreciation Return
Income Return
End Market Value

ID
Portfolio ID
Market
Property Type
Region
Expected Total Return
Current Weight (Holdings)

ID
Name

Optimization (table) Optimization Run (table) Constraint (table)

ID
Portfolio ID
Risk Min
Risk Max
Risk Step

ID
Optimization ID
Max Risk
Actual Risk
Expected Total Return

ID
Optimization ID
Type
Key
Min
Max

Optimization Weight (table)

ID
Run ID
Asset ID
Optimal Weight (Holding)

9

2.4.2 Power BI Data Structures
The following data structures (tables) will be consumed by Power BI to visualize its graphics.
The first row denotes the table headers. The second row denotes an example data value.

First Report (Current vs. Optimal vs. Market Portfolio)

Market Property
Type

Region Weight Market
Value

Expected
Return

Holding
Type

“New York” “R” E 0.05 50000000
or as ‘%’?

0.03 “NCREIF”
or “current”
or
“optimal”

Second Report (Efficiency Frontier Graph)

Name Type Expected Return Risk

The name of this data
point with respect to
its type. For a market
type data point, the
name may be “New
York” or “Boston”.

“current_portfolio”,
“optimal_portfolio”,
“ncreif_portfolio”,
“market”,
“property_type”,
“region”,
“custom”

Percentage as a
decimal (i.e. 0.03)

Percentage as a
decimal (i.e. 0.03)

10

3.0 Implementation

3.1 Implementation Diagram

Our implementation closely follows our planned architecture.

11

3.2 Software Used

The application is written entirely in Python to handle backend components as well as

the user interface. To handle user requests and routing in the application, Flask, which is a
micro web framework, was used for the backend. We made use of Dash by Plotly to generate
interactive interfaces for the user.

On top of the Python-based tools, we also utilized Microsoft’s Power BI Embedded
services hosted on the Azure cloud platform. Power BI is a business analytics solution that lets
us visualize our data into dashboards and embed those dashboards in our web application. We
used an open source library, adal, to handle authentication with Azure Active Directory. Through
the Power BI REST API we are able to build dynamic dashboards and reports that are
customizable by the user.

3.3 Rationale for Software Choices
We decided to use Python for our base language as Python offers a diverse toolset for

data manipulation and has been used by most of the team before. Also, Principal has more
experience with Python. Our UI is built using Dash by Plotly on top of a Flask server, both of
which are Python frameworks. Our original idea was to use Plotly for the data visualizations,
and thus keep all of our processing in Python. However, it was later decided that we would use
Microsoft’s Power BI for data visualization, as Principal has more familiarity with Power BI.

3.4 Standards and Best Practices
We used Git for version control. Git allowed us to use Merge Requests for code reviews

to keep our source code clean, readable, and understandable. We followed Python standards
and guidelines for our code syntax.

12

4.0 Testing, Validation, & Evaluation

4.1 Test Plan
There were two main facets of testing to be done in this project. The first was unit

testing. Because out application used Python, the module unittest was used. The second facet
of testing was user-level testing. This required us to give test application users (our client
Principal) a Google form to fill out while they used our application in their day-to-day. Both of
these testing plans are further detailed below.

4.2 Unit Testing
For unit testing we used unittest, a Python module. Because of the many feature

requests that continued to stream consistently throughout the semester, our code coverage for
unit tests was quite low.

4.3 User-Level Testing
We coordinated user testing sessions with Principal. Our app has execution instructions

that, either, the tester or proctor can follow. The Google Form link is sent with a version number,
so the results can be used effectively. Also, the link is active; the form can be updated on-the-fly
and show changes immediately. There are sections for qualitative and quantitative responses.
There are various aspects that are ranked 1-5 for each section of our app and text boxes for
longer responses or suggestions. Google Form summarizes all responses by averaging any
quantitative response and listing all qualitative together. Individual responses are automatically
saved in a Google Sheet (or downloaded as a csv). The Frontend team has access to the
Sheet, so they can immediately see each response and reference when iterating over the
design. After finishing a round of testing, all responses are downloaded and saved for record
keeping.

4.4 Evaluation
The evaluation of the service came from the survey that we got portfolio managers to

respond to our survey (results). We also had weekly meetings with our Principal team that aided
us to understand the needs of our clients.

13

https://docs.google.com/forms/d/e/1FAIpQLSfsLNbjnxOPJkKz-Y_q9zEIBdkQ7cSZz6y0VfKr7fvf25VYgw/viewform?usp=sf_link
https://docs.google.com/forms/d/1oqpRJfc1QoXneKnSo15us1Md-EuYHISxVk49qtJkItc/edit#responses
https://docs.google.com/spreadsheets/d/14yTvt4I1uq8BvR3oUb4zG8ydku2Stjlwj8i872fmx4E/edit#gid=679899775
https://docs.google.com/spreadsheets/d/14yTvt4I1uq8BvR3oUb4zG8ydku2Stjlwj8i872fmx4E/edit?usp=sharing

5.0 Project & Risk Management

5.1 Task Decomposition
Task assignment was flexible throughout the project. We split our group into a Frontend

and Backend team. Blake and Cole worked primarily on the Python portfolio optimizer. Lee
worked primarily on the UI Dash application.Kevin worked primarily on the Power BI data
visualizations. Nick worked primarily on User Testing and helped the Backend integrate PBI.

5.1.1 Roles & Responsibilities
Blake Project Lead Backend and Markowitz Optimization
Colton Meeting Scribe Backend and Communication
Kevin Quality Control Frontend and Power BI
Lee Meeting Facilitator Frontend and UI
Nick Report Manager Backend and User Testing

14

5.2 Project Schedule

5.2.1 Proposed
The following table represents our schedule for this semester. Last semester was

learning about MPT and Markowitz optimization, along with planning and defining our project.

Figure 3: Proposed Project Timeline

15

5.2.2 Actual
Below is our actual project timeline for this semester. As shown, we completed our

objectives.

Figure 4: Actual Project Timeline

16

5.3 Risks & Mitigation

5.3.1 Potential
There are two main risks that we would expect. The first is that the frontend might not be

intuitive for the users to interact with at first. This can be addressed by having multiple users
both within our team and at Principal use the application and provide feedback. The second
main risk is that the backend algorithms could be inefficient. This can be managed by starting
early and making adjustments to the prototype as needed. Regular communication with the
client will be crucial to creating the best product possible.

5.3.2 Actual
The main risk encountered during application development was lack of ability to develop

specific UI/UX features due to the rigidity of the application framework. We were limited to using
Dash, which required learning and couldn’t use certain functionality that JavaScript is capable
of.

Another risk we experienced was with using Power BI. Also, we were required to have a
PBI Pro license connected to our account; we activated a free-trial but have run out. Our
advisor, Chinmay Hegde, started a trial on his account that we are able to use.

5.3.3 Mitigation
The first main risk was mitigated by regularly showing our progress to Principal, and

using their feedback to improve the UI. Improving the optimizer also required feedback from
Principal and many different iterations. The second main risk was mitigated by ensuring
someone on our team had an active trial PBI Pro account, and that Principal has active PBI Pro
licences to use when we pass on the application.

5.4 Lessons Learned
One of the biggest lessons learned were the difficulties in meeting client needs with

developer skill. The biggest difficulty in this project was the use of Dash for the frontend. One
big issue with Dash is the lack of ability to add functionality to dynamically added webpage
elements.

17

6.0 Conclusions

6.1 Closing Remarks
All in all, the project was a great success. Like with any software application, there is

always room for further improvement; however, promised features have been accomplished and
the final product functions as intended.

All team members stood to learn a lot about software development. This was realized
through many trials and tribulations. The growth of each team member as a developer is fully
visible.

6.2 Future Work
The code will be handed off to Principal for further iteration. The code base has already

sprung up multiple other Principal projects in related fields as a bases on how to use the Dash
framework.

18

