

Real Estate Portfolio Optimization
Project Plan

Blake Roberts Project Lead / Backend

Colton Goode Meeting Scribe / Backend

Kevin Johnson Quality Control / Frontend

Leelabari Fulbel Meeting Facilitator / Frontend

Nickolas Moeller Report Manager / Backend

Client Principal Financial Group

Faculty Advisor Chinmay Hegde

Team Website https://sdmay19-07.sd.ece.iastate.edu

Team Email sdmay19-07@iastate.edu

1

Table of Contents
Table of Contents 1
Figures 3
Tables 3
Symbols 3
Definitions 3

1.0 Introductory Materials 5
1.1 Acknowledgment 5
1.2 Problem Statement 5
1.3 Intended Project 5
1.4 Intended Users and Intended Uses 5
1.5 Assumptions and Limitations 6

1.5.1 Assumptions 6
1.5.2 Limitations 6

1.6 Expected End Product and Other Deliverables 6
1.6.1 Prototype - December 2018 6
1.6.2 Minimum Viable Product - March 2019 6
1.6.3 Real Estate Portfolio Optimization - May 2019 7

2.0 Proposed Approach and Statement of Work 8
2.1 Objective of the Task 8
2.2 Functional requirements 8
2.3 Constraints and Considerations 9

2.3.1 Permanent Constraints 9
2.3.2 User-defined Constraints 9
2.3.3 Relevant Standards and Specifications 9

2.4 Previous Work and Literature 9
2.5 Technology Considerations 9
2.6 Security Considerations 10
2.7 Safety Considerations 10
2.8 Cost Considerations 10
2.9 Task Approach 10

2.9.1 Approach 1: Server/Client 10
Figure 1: Application Block Diagram Utilizing a Server/Client Paradigm 11

2.9.2 Approach 2: Dash Framework 11
Figure 2: Application Block Diagram Utilizing Dash Framework 12

2.10 Possible Risks and Risk Management 12
2.11 Project Proposed Milestones and Evaluation Criteria 12

2

2.12 Project Tracking Procedures 13
2.13 Expected Results and Validation 13
2.14 Test Plan 13

3.0 Estimated Resources, Project Timeline, and Feasibility Assessment 15
3.1 Estimated Resources 15

3.1.1 Personnel Effort Requirements 15
3.1.2 Financial Requirements 15

3.2 Feasibility Assessment 15
3.3Project Timeline 16

Figure 3: Project Timeline 16

4.0 Closure Materials 17
4.1 Closing Summary 17
4.2 References 17

3

Figures
Figure 1 : Block Diagram Utilizing a Server/Client Paradigm
Figure 2 : Block Diagram Utilizing Dash Framework
Figure 3 : Project Timeline

Tables
Table 1 : Project Milestone Presentations

Symbols

Definitions
API Application Program Interface

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

JS JavaScript

MPT Modern Portfolio Theory

MVC Model View Controller

MVP Minimum Viable Product

PDF Portable Document Format

PM Portfolio Manager

REST Representational State Transfer

SPA Single Page Application

SQL Structured Query Language

SSL Secure Socket Layer

TCP Transmission Control Protocol

UDP User Datagram Protocol

UI User Interface

UX User Experience

4

VPN Virtual Private Network

Web App Website Application

5

1.0 Introductory Materials

1.1 Acknowledgment
We would like to thank our advisor Chinmay Hegde. Also, Benjamin Harlander, Q

Mabasa, Arthur Jones, Jonathan Ling, and Jonathan Frank of Principal Financial Group.

1.2 Problem Statement
Principal lacks an in-house (non-3rd-party) tool capable of assessing the potential return

and risk of real estate investments. Without such a tool, analysis of assets comes down to a
per-property basis. It is difficult, near impossible, to assess market level strategies from
per-property analysis. Market level analysis strategies, such as portfolio optimization models,
are needed to obtain critical market level view of the investment space. Principal attempts to
mitigate the lack of tooling through the use of a third party, Costar. Costar compiles quarterly
reports including market and property level analysis. Not only are these reports costly, but they
lack configuration. The lengthy reports require analysts to comb through a lot of data to find the
analysis they are looking for. Moreover, the analysis provided is not configurable and
sometimes does not suit the needs of the portfolio manager or analyst.

An application is needed which analyzes market data and user constraints to advise
portfolio managers in purchase and sale decisions. The application will demonstrate principles
of Modern Portfolio Theory (MPT), namely, the Markowitz portfolio optimization model. The
application must be flexible to support many modes of portfolio analysis by handling a multitude
of constraints over factors such as: market, property type, and time period.

1.3 Intended Project
The project will be a web application hosted internally on Principal's network. Data

processing and computation will be done in Python. Data persistence will be accomplished via
an internally hosted SQL database. The user interface (UI) will utilize the Python framework,
Dash. Limiting the project to a single language, Python, will enable the Principal data science
team to iterate on design due to familiarity with the language.

1.4 Intended Users and Intended Uses
Primarily, the intended users of the application are portfolio managers and analysts. The

users will load portfolio data and constraints and then run the Markowitz portfolio optimization
algorithm. The PM’s will utilize the optimized portfolio to adjust their current investment holdings
as they see fit. In addition, users will define their own constraints to feed our optimization
algorithm to meet their personal portfolio requirements.

6

The application will perform Markowitz and Black-Litterman portfolio optimization on a
well-defined set of configurable constraints. The efficiency frontier graph will be accompanied by
further market data analysis. Recommendations will be provided for the best course of action for
the portfolio. The generated information and analysis will be available for export as a PDF
report.

1.5 Assumptions and Limitations

1.5.1 Assumptions
1. The users will have an understanding of portfolio optimization and the concepts of MPT.

a. Markowitz Model
b. The effect of constraints on a optimization model
c. Efficiency frontier and optimization results

2. User’s input data follows a standard format of real estate properties.
a. Portfolio asset holdings
b. Asset expected returns
c. Asset covariance matrix

1.5.2 Limitations
1. A closed set of portfolio analysis and optimization constraints will be available.
2. Purchasing and selling real estate is a complicated process which may render certain

portfolio optimizations impossible.

1.6 Expected End Product and Other Deliverables
Our team is expected to deliver software capable of performing real estate portfolio

optimization. As such, the application will be split into three project milestones: prototype,
minimum viable product (MVP), and final product. The application code base and software
documentation will be included in the delivery of the final product.

1.6.1 Prototype - December 2018
The prototype will consist of an application capable of performing Markowitz portfolio

optimization on a limited set of constraints and displaying the model’s efficiency frontier. The
prototype will be demonstrated to the client, but will not be made readily available or distributed
to stakeholders.

1.6.2 Minimum Viable Product - March 2019
The MVP will be a minimally complete application capable of optimization of a real estate

portfolio on a logical subset of constraints. The MVP will be made available and distributed to
stakeholders for quality assurance with the intention being iteration and improvement.

7

1.6.3 Real Estate Portfolio Optimization - May 2019
The final application will be handed off to Principal for future support and iteration. The

application, in its final state, will be hosted and supported by Principal IT. Support of the
application’s availability will be handed off to Principal IT. The completed project will include:

● Code Base - the git repository of the application’s source code.
● Software Documentation - documentation on how to run the application locally for

development purposes, as well as the software architecture and design.

8

2.0 Proposed Approach and Statement of Work

2.1 Objective of the Task
The goal of this project is to develop an application capable of performing real estate

market analysis. Specifically, the application will implore ideas of MPT including Markowitz
portfolio optimization. The application will also display the results of such analysis in common
forms such as the portfolio efficiency frontier. The application will be a hosted website
application available internally to Principal.

2.2 Functional requirements
Read current portfolio holdings. Basic: Upload portfolio holdings from csv files. This would
require standardizing the input format. Ideal: Read returns and covariance from a database.

Read expected returns and covariance matrix for all assets. Basic: Upload returns and
covariance matrix from csv files. This would require standardizing the input format. Ideal: Read
returns and covariance from a database.

Update expected returns. User should have the ability to update the expected returns for
specific asset groups by location, property type, or both.

Define optimization constraints. User can add or edit constraints prior to optimization. See
section on Optimization Constraints for desired functionality.

Generate optimal portfolios. Based on the user’s defined constraints, launch a backend
process to determine the optimal portfolio holdings.

Generate and visualize efficient frontiers. Generate an efficient frontier from a range of risk &
return values. Show individual markets, property types, and the current portfolio compared to
the frontier.

Visualize current holdings. Show current portfolio holdings by geography, property, etc. Show
top N holdings. Summarize expected returns and risk.

Visualize optimal portfolio results. Show optimal portfolio holdings by geography, property,
etc. Show top N holdings. Summarize expected returns and risk.

Visualize differences between optimal and current holdings. Summarize differences
between the optimal and current portfolios and display in maps, charts, plots, etc.

Recommend actions based on current holdings. Recommend buy and sell decisions given
the current portfolio holdings. Justify decisions based on increasing expected returns, reducing
risk, or both.

Share results. Functionality to export results to a report or share via email.

9

2.3 Constraints and Considerations

2.3.1 Permanent Constraints
1. Portfolio must be fully invested - The assets weights in the portfolio must sum to 1.0.
2. Long positions only - All asset weights must be greater than or equal to zero.

2.3.2 User-defined Constraints
1. Property type constraint - The user can specify the minimum and maximum allocation of

the portfolio to a specific property type (i.e. Sector as shown on the image below.)
a. Example: Total Office weight < 30%

2. Geographic constraints - The user can specify the minimum and maximum allocation to
a specific region, state, or metro.

a. Example: New York City weight > 25%
3. Geography + Property type constraints - The user can specify a constraint for a property

type in a specific geographical area.

2.3.3 Relevant Standards and Specifications

The Risk Management, and the IEEE 1028-1998 - IEEE standard will be used by our

team for this project. It will help us identify risks related to our project and fix them before they
become a huge issue. We will also the use OpenAPI standard for the REST API that we will
create. The OpenAPI standard describes the way REST API should be managed.

2.4 Previous Work and Literature
In order to accurately design a system to perform portfolio optimization and real estate

market analysis, research into the concepts of MPT and forms of portfolio optimization models
was required.
MPT - http://sdmay19-07.sd.ece.iastate.edu/docs/MPT.pdf
Black-Litterman - http://sdmay19-07.sd.ece.iastate.edu/docs/BL%20Model.pdf
Black-Litterman - http://sdmay19-07.sd.ece.iastate.edu/docs/BlackLitterman.pdf

2.5 Technology Considerations
 The application backend will use Python with various open-source libraries such as

flask to behave somewhat like a server-client model. The front end will use the Python
framework Dash to generate User Interface elements from the data. Dash is a Python
framework for building analytical web applications without the need for Javascript, which allows

10

for the entire application to be in Python. Data will be taken in from the user via an SQL
database or a csv file, then be stored and queried via an SQL database for future use. For the
graph creation part of the frontend, the team has two options: creating the graph via Dash and
normal Python libraries or creating the graphs by using Plot.ly offline.

2.6 Security Considerations
Data supplied to the application will contain confidential financial information. Because of

this, the application will only be hosted internally by principal. This application will be accessed
via client web browser. The application will not need public network access; however, data
transfer will be encrypted via HTTPS and/or SSL. This will remove the risk of internal
man-in-the-middle attacks during a security breach. Additionally, this functionality will remove
the risk of said attack if the application is made available outside Principal’s office without a VPN
connection.

2.7 Safety Considerations
Due to the nature of the project, there is no risk of harm or detriment to health in the

development of our project or use of our product.

2.8 Cost Considerations
For this project, we will be using only open source libraries. After some research, we

determined that Power BI embedded will not be feasible so we will just use Plot.ly offline to
create the visualizations. The application will be hosted locally of the computers of every
Portfolio manager.

2.9 Task Approach
 Our approach is to use a Server and Client paradigm to segment the front and backend

using Dash with Python. The server would be a flask server which would

2.9.1 Approach 1: Server/Client
The initial approach, utilizing the server/client paradigm, creates a clear separation of the

user interface and experience (UI/UX) and the data analysis and portfolio optimization code.
Specifically, the frontend client code, written in Python, will handle user input and displaying
data. The backend server will be required to take in a standard set of user data and perform
aggregation and analysis on portfolio market data. It will output a standard data model for the
frontend to consume and display the data.

The added complexity of a frontend system runs the risk of slowing future feature
development by the client’s data science team. Extensive documentation on how to contribute

11

to the frontend system will be required. However, the backend system will be very simple in its
responsibility. This will allow for fast feature development of additional optimization strategies
and constraints. This system also has the added benefit of an HTTP API. This API could be
consumed by systems other than the frontend. One such example being a Python script
capable of leveraging the data analysis of the server without the necessity of interaction with the
user interface.

Figure 1: Application Block Diagram Utilizing a Server/Client Paradigm

2.9.2 Approach 2: Dash Framework
Utilizing the Dash framework will simplify the overall design of the application. This will

enable future iterations to be made by Principal with little software experience in languages
such as JavaScript. The worry with this design is its maintainability. Due to the large amount of
abstraction by the Dash framework, development may become cluttered. This will lead to
increased feature development time and the necessity of repeated code refactoring.

Nonetheless, the devised software architecture attempts to circumvent this risk by the
use of the Model, View, Controller (MVC) design paradigm. By distinct, logical separation of
concerns, the code will maintain clear organization. Including documentation surrounding the
organization of the code will lead to ease of future feature development by Principal’s data
science team.

12

Figure 2: Application Block Diagram Utilizing Dash Framework

2.10 Possible Risks and Risk Management
The two main risks that we would expect. The first is that the front end might not be

intuitive for the users to interact with at first. This can be addressed by having multiple users
both within our team and at Principal use the application and provide feedback. The second
main risk is that the backend algorithms could be inefficient. This can be managed by starting
early and making adjustments to the prototype as needed. Regular communication with the
client will be crucial to creating the best product possible.

2.11 Project Proposed Milestones and Evaluation Criteria
Prototype: Software provides correct optimization with few constraints and some visual graph.
The prototype will be a demo-able web application.
Checkpoint: First Semester Demo December 2018

MVP: Software will be a minimally complete application capable of optimization of a real estate
portfolio on a logical subset of constraints.
Checkpoint: March 2019

Testing: Software will be tested for performance and competence. User testing, with the client,
followed by iteration will be carried out during this time as the final project goal is reached.
Checkpoint: April 2019

13

Final: The software will accomplish all functional requirements and fit the clients full intentions.
The software will be available to the client as a product as well as its code base delivered with
documentation.
Checkpoint: May 2019

10/26/18 First Semester Mid-Point Presentation with Principal stakeholders

12/18 Mid-Year Presentation with Advisors

12/18 Mid-Year Presentation with Principal stakeholders

03/19 Second Semester Mid-Point Presentation with Principal stakeholders

05/19 End-Year Presentation with Advisors

05/19 End-Year Presentation with Principal stakeholders

2.12 Project Tracking Procedures
Our team participates in four weekly meetings throughout the rest of the semester: with

our adviser, an internal team meeting, a weekly update with Principal, and a technical meeting
with Principal. During these meeting is when a lot of larger decisions get made about the
direction of the current and future and course of the project. These meetings result steps that
will be taken in the future. Meeting minutes are also taken to document what was discussed.

Our team also will be filling out Principal mandated RASIC forms to document who is
assigned to what task. RASIC stands for Responsible, Approves, Supports, Informed,
Consulted. It is a table in which we assign the main responsibility to certain members and elect
supporting members if need be. We also can flag who will approve something or just who will be
informed and consulted. This is redone each week to document task assignments.

A project timeline will be implemented during the project. The timeline we have designed
will give us a week by week picture of tasks the team needs to accomplish by a certain date.
This is useful in determining what needs to be done next or if the team is behind or ahead of
schedule.

Lastly, our team uses a GIT repository to keep track of the changes made to the code.
GIT allows our team to develop remotely, and merge our code together in the end. It also keeps
logs that allow us to keep track of any changes and revert if we need to.

2.13 Expected Results and Validation
This project will fully meet the requirements defined in Functional Requirements.
To confirm that our solution works, we will follow the Test Plan that will be describe below.

2.14 Test Plan
Program will be tested with provided sample data (imported csv files/read from database)

14

Program will be tested with a variety of different constraints (Geographic and/or Property Type
constraints)
Algorithm will be tested to ensure the optimization follows MPT.
Testing and error handling must be done for incorrect data inputs. These data inputs include
imported files, database queries, and expected return variations before the portfolio is
optimized.
UI elements will be tested for correctness, intuitiveness, and reliability. These UI elements
include graphs displaying portfolio data, tables containing portfolio data, labels, and buttons.

15

3.0 Estimated Resources, Project Timeline, and
Feasibility Assessment

3.1 Estimated Resources

3.1.1 Personnel Effort Requirements
1. Four team meetings per week (with or without the client)

a. Weekly project update meeting with client
b. Weekly meeting with adviser
c. Weekly technical meeting to discuss application (With or without client)
d. Weekly internal team meeting

2. At minimum of 6 hours per person per week dedicated to working on the project outside
of the 4 proposed meetings

3. Ability to travel to client office in downtown Des Moines twice a semester for in person
presentations

4. Clear communication on tasks completed and changes made to other members of the
team

3.1.2 Financial Requirements
The project will require no financial requirements. Technology used is constrained to be

open source and therefore free to use. Additionally, the application will be hosted by Principal
and will not use a cloud provider.

3.2 Feasibility Assessment
This project involves reading raw financial investment data, running an optimization

algorithm, storing the data for reuse, and providing data visualization for the user in a web
interface. The user will also be able to input custom constraints. The main source of risk that we
anticipate is that the optimization may become overly complex with multiple constraints, and
provide non-optimal results to user. The use of popular existing open source packages in
Python designed for data science helps reduce that complexity. They are popular, well
documented, and provide many common data science functions built in already, making it much
more feasible to accomplish.

16

3.3Project Timeline

Figure 3: Project Timeline

17

4.0 Closure Materials

4.1 Closing Summary
So far, our team has managed to complete a couple of crucial steps. We have a working

Markowitz algorithm in place. We have completed mockup designs for our frontend, and
discussed the design with Principal. We have been implementing the framework for the frontend
and backend.

Our goal is to create an app that will allow clients of Principal to use data science to
optimize portfolios while also allowing for the specification of particular interest areas for
investment.

The best plan of action for us is to create a native application that has a frontend and
backend component. The backend be will written in a Python framework such as flash. That will
be the best option for allowing portfolio optimization while still incorporating the ability to
communicate with the frontend framework. The Principal team is most familiar with it so they
would be able to continue developing on it in the future.

4.2 References
[1] T. Idzorek, A STEP-BY-STEP GUIDE TO THE BLACK-LITTERMAN MODEL. Ibbotson

Associates , 2018.

